![[Graphics:indexgr2.gif]](indexgr2.gif)
![[Graphics:indexgr3.gif]](indexgr3.gif)
Sx Sin[1/x] is caught between x and -x. By the Flyswatter principle,
the limit as x--> is 0.
![[Graphics:indexgr2.gif]](indexgr2.gif)
⁃Graphics⁃
The function blows up and occilates infinitely often. No limit.
![[Graphics:indexgr2.gif]](indexgr2.gif)
![[Graphics:indexgr10.gif]](indexgr10.gif)
As x--> 0, the limits along irrations x and along rational x are the same,p namely zero
Limit is therefore zero.
![[Graphics:indexgr2.gif]](indexgr2.gif)
![[Graphics:indexgr18.gif]](indexgr18.gif)
At x = &pgr; the limits are different
![[Graphics:indexgr2.gif]](indexgr2.gif)
![[Graphics:indexgr25.gif]](indexgr25.gif)
![[Graphics:indexgr2.gif]](indexgr2.gif)
![[Graphics:indexgr28.gif]](indexgr28.gif)
Left limit is 4, Right limit if 3
![[Graphics:indexgr2.gif]](indexgr2.gif)
![[Graphics:indexgr31.gif]](indexgr31.gif)
Limit does not exist (Infinity is not a real number)
![[Graphics:indexgr2.gif]](indexgr2.gif)
![[Graphics:indexgr36.gif]](indexgr36.gif)
![[Graphics:indexgr2.gif]](indexgr2.gif)
![[Graphics:indexgr41.gif]](indexgr41.gif)
This can be seen as
=
( Cos[x] -1)
![[Graphics:indexgr2.gif]](indexgr2.gif)
![[Graphics:indexgr48.gif]](indexgr48.gif)