Math 1501
Quiz #10

November 11, 1999
Tom Morley
Name: ____________________________

Don't Panic

Open Book and Notes. You have 30 minutes. Carefully explain your proceedures and answers

Problem 1 (10 points)


A rod lies between x-0 and x = L. Its mass density is proportional to the cube of the distance from x = L Find the center of mass.

Calculations

[Graphics:quiz10gr2.gif][Graphics:quiz10gr1.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr3.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr4.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr5.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr6.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr7.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr8.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr9.gif]

Problem 2 (10 Points)

Consider the region(s) bounded by y=0, y=4, and the ccurves y = [Graphics:quiz10gr10.gif] and y = [Graphics:quiz10gr11.gif]. Set up the area as a) Integral(s) with respect ot x, and b) Integral(s) with respect to y. Do not actually evaluate the integrals.

Calculations

[Graphics:quiz10gr2.gif][Graphics:quiz10gr15.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr16.gif]
a) As a y integral

[Graphics:quiz10gr2.gif][Graphics:quiz10gr17.gif]

You have to break the integral into two pieces, corresponding to the two pieces.

[Graphics:quiz10gr2.gif][Graphics:quiz10gr18.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr19.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr20.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr21.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr22.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr23.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr24.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr25.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr26.gif]
a) As an x integral

The first piece is not too bad --

[Graphics:quiz10gr2.gif][Graphics:quiz10gr27.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr28.gif]

The second piece has to be broken into two integrals...

[Graphics:quiz10gr2.gif][Graphics:quiz10gr29.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr30.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr31.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr32.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr33.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr34.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr35.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr36.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr37.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr38.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr39.gif]

Problem 3 (10 Points)

Consider the region(s) bounded by y=0, y=4, and the ccurves y = [Graphics:quiz10gr40.gif] and y = [Graphics:quiz10gr41.gif].Find the volume when this region is revolved arround the y axix. Hint Integrate with respect to y.

Answer

[Graphics:quiz10gr2.gif][Graphics:quiz10gr42.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr43.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr44.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr45.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr46.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr47.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr48.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr49.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr50.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr51.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr52.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr53.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr54.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr55.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr56.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr57.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr58.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr59.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr60.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr61.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr62.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr63.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr64.gif]
[Graphics:quiz10gr2.gif][Graphics:quiz10gr65.gif]

[Graphics:quiz10gr2.gif][Graphics:quiz10gr66.gif]