I'm Tom Morley
If | x^2 - 10 x | = 16, then either (x^2 - 10 x ) = 16 or - (x^2 - 10 x ) = 16. The roots of these two quadatic equations are (in order):
5-sqrt(41) < 2 < 8 < 5 + sqrt(41)
At x = 5, | x^2 - 10 x = 0| = | -25| = 25 > 16, at x = -3, x^2 - 10 x = (-3)^2 - 10 *(-3) = 36 > 16 at x = 15, x^2 - 10 x = 75 > 16 at x = 0 , x^2 - 10 x = 0 < 16 at x = 10 x^2 - 10 x = 0 < 16Therefore, the x such that | x^2 - 10 x | <= 16 are exactly :
[5-sqrt(41),2] union [8, 5+ sqrt(41)]
( Note --> = limit) f(x + h ) - f(x) ---------------- h = 1/sqrt(2(x+h) + 3) - 1/sqrt(2x+3) --------------------------------- h = 1/sqrt(2(x+h) + 3) - 1/sqrt(2x+3) 1/sqrt(2(x+h) + 3) + 1/sqrt(2x+3) --------------------------------- --------------------------------- h 1/sqrt(2(x+h) + 3) + 1/sqrt(2x+3) = 1/(2x+2h+3) - 1/(2x+3) -------------------------------------- h (1/sqrt(2(x+h) + 3) + 1/sqrt(2x+3)) = -2h / ((2x+2h+3) (2x+3)) ------------------------------------- h (1/sqrt(2(x+h) + 3) + 1/sqrt(2x+3)) = -2 / ((2x+2h+3) (2x+3)) ------------------------------------- ---> (1/sqrt(2(x+h) + 3) + 1/sqrt(2x+3)) = -2 / ((2x+3) (2x+3)) ------------------------------------- ---> (1/sqrt(2x + 3) + 1/sqrt(2x+3)) = -2 / ((2x+3) ^2) ----------------------- (2/sqrt(2x + 3) sqrt(2x + 3) -1 ------------ = --------------- ((2x+3) ^2) (2x + 3) ^(3/2)
The slope of the line is -2, so we are trying to solve f'(x) = 1/2. This is x^2 - 4 x + 7 /2 = 2, whose solutions are: x = 1 and x = 3. The points are therefore (x,f(x)) which are: (1, 47/6) (3, 15/2)